Critical evaluation of pulse-echo ultrasonic test method for the determination of setting and mechanical properties of acrylic bone cement: influence of mixing technique.
نویسندگان
چکیده
Currently there is no reliable objective method to quantify the setting properties of acrylic bone cements within an operating theatre environment. Ultrasonic technology can be used to determine the acoustic properties of the polymerising bone cement, which are linked to material properties and provide indications of the physical and chemical changes occurring within the cement. The focus of this study was the critical evaluation of pulse-echo ultrasonic test method in determining the setting and mechanical properties of three different acrylic bone cement when prepared under atmospheric and vacuum mixing conditions. Results indicated that the ultrasonic pulse-echo technique provided a highly reproducible and accurate method of monitoring the polymerisation reaction and indicating the principal setting parameters when compared to ISO 5833 standard, irrespective of the acrylic bone cement or mixing method used. However, applying the same test method to predict the final mechanical properties of acrylic bone cement did not prove a wholly accurate approach. Inhomogeneities within the cement microstructure and specimen geometry were found to have a significant influence on mechanical property predictions. Consideration of all the results suggests that the non-invasive and non-destructive pulse-echo ultrasonic test method is an effective and reliable method for following the full polymerisation reaction of acrylic bone cement in real-time and then determining the setting properties within a surgical theatre environment. However the application of similar technology for predicting the final mechanical properties of acrylic bone cement on a consistent basis may prove difficult.
منابع مشابه
Optimisation of a two-liquid component pre-filled acrylic bone cement system: a design of experiments approach to optimise cement final properties.
The initial composition of acrylic bone cement along with the mixing and delivery technique used can influence its final properties and therefore its clinical success in vivo. The polymerisation of acrylic bone cement is complex with a number of processes happening simultaneously. Acrylic bone cement mixing and delivery systems have undergone several design changes in their advancement, althoug...
متن کاملEffect of Graphene Oxide Nanoparticles Addition on Mechanical and Biological Properties of Calcium Phosphate Cement
In the present study, we have evaluated the effects of graphene oxide (GO) addition on the physical-mechanical-biological properties of calcium phosphate cement (CPC). The in vitro cellular responses of MG63 and in vivo tissue responses after the implantation of CPC/GO in parietal bone defects of wistar rats were also investigated. The brushite calcium phosphate cements were prepared by mixi...
متن کاملValidation of the Small Punch Test Technique to Measure the Mechanical Properties of Acrylic Bone Cement
Introduction The main function of acrylic bone cement is to transfer loads from the prosthesis to the cancellous bone or increase the load carrying capacity of the surgical prosthesis. If the imposed stresses are greater than the load carrying capability, then cement fracture may occur resulting in failure of the joint replacement. The fracture of the cement mantle and subsequent premature loos...
متن کاملAcrylic antibiotic-loaded bone cement: a basic study
Abstract Objective: The aim of this study was to evaluate the efficacy of antibiotic-loaded bone cement in controlling local infection and in regard to its physical characteristics, elastic modulus, and tensile strength in-vitro. Methods: Acrylic bone cement, based on polymethylmethacrylate (PMMA) was mixed with the powder form of three antibiotics, i.e., gentamicin, tobramycin, and...
متن کاملHIGH TEMPERATURE ELASTIC PROPERTIES OF REFRACTORY MATERIALS
Abstract: A pulse-echo technique, based on ultrasonic "long-bar" mode (LBM) velocity measurements, working up to 1700°C is described. Magnetostrictive transducers and ultrasonic lines used in a 40-85 kHz frequency range are detailed. The conditions of choice of fundamental parameters (frequency, line geometry, sample size) are discussed in relation with the nature and the microstructure of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ultrasonics
دوره 56 شماره
صفحات -
تاریخ انتشار 2015